After providing all the funding for The Brain from Top to Bottom for over 10 years, the CIHR Institute of Neurosciences, Mental Health and Addiction informed us that because of budget cuts, they were going to be forced to stop sponsoring us as of March 31st, 2013.

We have approached a number of organizations, all of which have recognized the value of our work. But we have not managed to find the funding we need. We must therefore ask our readers for donations so that we can continue updating and adding new content to The Brain from Top to Bottom web site and blog.

Please, rest assured that we are doing our utmost to continue our mission of providing the general public with the best possible information about the brain and neuroscience in the original spirit of the Internet: the desire to share information free of charge and with no adverstising.

Whether your support is moral, financial, or both, thank you from the bottom of our hearts!

Bruno Dubuc, Patrick Robert, Denis Paquet, and Al Daigen




Wednesday, 28 August 2019
Shifting Paradigms in the History of Neuroscience

   The development of a scientific discipline over time is often far from a linear sequence of events that build on each other logically. That can happen, of course. But philosophers of science, such as Thomas Kuhn, have clearly shown that “normal science” often operates under a dominant paradigm for an extended period, until enough “abnormal data” (i.e., data that contradict that paradigm) accumulate to lead to a scientific revolution, accompanied by a radical shift in that paradigm.

One of these revolutions, famous in history and entertainingly presented in the Neurohistory Cartoons Project, broke out when the 1906 Nobel Prize in Physiology/Medicine was awarded jointly to Italian scientist Camillo Golgi and Spanish scientist Santiago Ramón y Cajal. In Golgi’s speech accepting the prize, he defended the then widely accepted “reticular theory,” that the nervous system formed a physically continuous network in which the cell bodies were simply more important nodes. Immediately afterward (and, ironically enough, on the basis of microscope observations using a stain developed by Golgi), Cajal defended his new “neuron theory,” that the nervous system was composed of neurons, each of which was a distinct, separate cell. I don’t know what the atmosphere in the room was like after these two conflicting speeches, but the fact is that Cajal’s theory was gradually adopted by the scientific community as further data emerged to support it (for instance, the subsequent discovery of the chemical synapse and the neurotransmitters by which it operates).

But over the past few decades, neuroscientists have observed that synapses of another type — electrical synapses, formerly associated more with invertebrates — are actually far more common in the neurons of the human cortex than was once believed. And the more that scientists study electrical synapses, the more that they turn out to be complex and to serve a variety of functions, such as when axo-axonal electrical synapses synchronize the activity of neighbouring pyramidal neurons. In other words, the data are now revealing something very much like the continuous network originally posited by Golgi! As so often happens in biology, the truth turns out to be a matter not of one or the other, but rather of one and the other!

Uncategorized | No comments


Wednesday, 7 August 2019
Study on Brain’s Reaction to Social Isolation Argues Against Its Use in Prisons


Why do people who have been intentionally isolated from their peers (for example, prison inmates who have been placed in “disciplinary isolation”) find this experience so completely dehumanizing? We all know that human beings have great needs for social contact. But are these needs so great that simply being deprived of such contact upsets our entire mental equilibrium? If a study published in the February 2016 issue of the journal Cell is to be believed, it would appear that social isolation does in fact lead to genuine impairments in brain function. (more…)

Mental Disorders | No comments


Monday, 8 July 2019
Power Weakens Cognitive Abilities To Bond with Other People

This week I’d like to tell you about an article that appeared in The Atlantic in August 2017 and that I’d never gotten around to telling you about before. It was called “Power Causes Brain Damage”, with the subtitle “How leaders lose mental capacities—most notably for reading other people—that were essential to their rise”. The article cites UC Berkeley psychologist Dacher Keltner, whose past work has included studies showing that rich people are more inconsiderate in various situations, such as taking turns with their vehicles at 4-way stops. Apparently, personal wealth provides a feeling of unlimited power that causes rich people to become detached from reality. This finding raises serious questions about the state of mind of the many wealthy people who are elected to represent the people as a whole. (more…)

Uncategorized | No comments


Wednesday, 26 June 2019
A communication mechanism in plants that resembles the nervous system in animals

In September 2018, the journal Science published an article with the intriguing title “Nervous system-like signaling in plant defense”. This article describes the discovery of an internal signaling mechanism that some plants use when they are being attacked by plant-eating animals. This mechanism uses glutamate, an excitatory neurotransmitter that plays a well known role in the brains of mammals as well. In these plants, the glutamate molecules bind to a receptor similar to the glutamate receptor in the mammalian brain. By doing so, they increase the concentration of calcium circulating between the plant’s cells (made visible in this photo by means of a fluorescent protein), which warns the rest of the plant that one of its leaves is in the process of being eaten. In just a few minutes, according to this article, the plant activates defense mechanisms to protect its other leaves. (more…)

From the Simple to the Complex | No comments


Thursday, 18 April 2019
Online Game Advances Neuroscientific Research

Five years ago, I wrote a post in this blog about a website called EyeWire, on which Dr. Sebastian Seung and his laboratory enlisted the help of the general public to colour the extensions (axons and dendrites) of neurons on various thin, sequential slices of nerve tissue. The lab then used the results to reconstruct each neuron in 3D on a computer. Today I want to tell you about the Mozak project, which has the same objective of reconstructing neurons in 3D. But where Dr. Seung’s EyeWire project dealt only with ganglion neurons in the retinas of mice, the Mozak project deals with neurons from various parts of the brains of various animals. (more…)

From the Simple to the Complex | No comments


  • Page 1 of 2
  • 1
  • 2
  • >